TRANSFORMATIONS CHEAT-SHEET!

REFLECTIONS:

\checkmark Reflections are a flip.
\checkmark The flip is performed over the "line of reflection." Lines of symmetry are examples of lines of reflection.
\checkmark Reflections are isometric, but do not preserve orientation.

Coordinate plane rules:

Over the x-axis:	$(x, y) \rightarrow(x,-y)$
Over the y-axis:	$(x, y) \rightarrow(-x, y)$
Over the line $y=x:$	$(x, y) \rightarrow(y, x)$
Through the origin:	$(x, y) \rightarrow(-x,-y)$

TRANSLATIONS:

\checkmark Translations are a slide or shift.
\checkmark Translations can be achieved by performing two composite reflections over parallel lines.
\checkmark Translations are isometric, and preserve orientation.

Coordinate plane rules:

$(x, y) \rightarrow(x \pm h, y \pm k)$ where h and k are the horizontal and vertical shifts.
Note: If movement is left, then h is negative. If movement is down, then k is negative.

DILATIONS:

\checkmark Dilations are an enlargement / shrinking.
\checkmark Dilations multiply the distance from the point of projection (point of dilation) by the scale factor.
\checkmark Dilations are not isometric, and preserve orientation only if the scale factor is positive.

Coordinate plane rules:

From the origin dilated by a factor of "c": $(x, y) \rightarrow(c x, c y)$
From non-origin by factor of " c ": count slope from point to projection point, multiply by "c," count from projection point.

ROTATIONS:

$\checkmark \quad$ Rotations are a turn.
\checkmark Rotations can be achieved by performing two composite reflections over intersecting lines. The resulting rotation will be double the amount of the angle formed by the intersecting lines.
\checkmark Rotations are isometric, and do not preserve orientation unless the rotation is 360° or exhibit rotational symmetry back onto itself.
\checkmark Rotations of 180° are equivalent to a reflection through the origin.
Coordinate plane rules:

Counter-clockwise:	Clockwise:	Rule:
90°	270°	$(x, y) \rightarrow(-y, x)$
180°	180°	$(x, y) \rightarrow(-x,-y)$
270°	90°	$(x, y) \rightarrow(y,-x)$

